Upper Limb Trajectory Reconstruction using Low-Cost IMUs

M. Sera1,2, A. David3, C.M.L. Hughes2,4, X. Zhang3, & X. Du5

1: Interdisciplinary Studies, 2: Health Equity Institute, 3: Computer Engineering, 4: Kinesiology, 5: China Academy of Railway Sciences

Purpose

To develop & validate a low-cost wearable sensor, then integrate it into the outREACH mHealth system to provide quantitative information about movement strategy & quality

Methods

- Twelve participants between the ages of 21 & 35 years of age
- Three prehension tasks
 - 1D task (table slide), 2D task (washer task), 3D task (pour water task)
- Kinematic movement data were collected using a 7-camera Vicon 3D motion analysis system & wearable sensor
 - 100 Hz sampling rate
 - 3 reflective markers placed on wearable sensor

Results and Discussion

- Current wearable sensors integrated into mHealth rehabilitation systems are hampered by:
 - High cost
 - Clinically uninformative data
 - Low overall system usability
- The quaternion & Madgwick compensation filtering algorithm along with SVM resulted in improved trajectory reconstruction (corr = 0.875)

Future Research & Implications

- Determine whether other machine learning techniques (e.g., RNN, HMM) can better reconstruct the 3D trajectories
- Development of reliable & valid low-cost IMU
- Integration of IMU into the outREACH tele-rehabilitation system
- Utilize tele-rehabilitation systems for individuals who do not have financial &/or physical access to rehabilitation services

References